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This paper reports on fifth graders’ proficiency with number line tasks in an interview
situation. The results revealed that at least 10% of students were unsuccessful in using a
simple number line effectively. Additionally, some students’ explanations suggest that
they do not appreciate that the number line is a measurement model rather than a counting
model. This study concludes with recommendations for explicit instruction, a note of
caution for interpreting number line items on numeracy tests, and avenues for future
research.

Introduction

The number line is a commonly used instructional aid in the primary years and is often

featured in mathematical tests. Hence, the number line is assumed to be a tool that

supports the development of conceptual understanding and an adequate measure of

mathematical understanding. However, in calling for research on mathematical practices to

improve equity for students and improve performance, Ball (2004) argued that there is a

need for “attention to aspects of mathematical proficiency that are often left implicit in

instruction, going beyond specific knowledge and skills to include the habits, tools,

dispositions, and routines that support competent mathematical activity” (p. 11)

(emphasis added). Hence, this paper explores students’ proficiency with the number line in

mathematical activity.

The Number Line

The number line is a diagram in which single positions encode quantitative information

by their position on a horizontal or vertical axis (Mackinlay, 1999). The unidimensionality

and encoding technique of number lines distinguishes them as an “Axis language” from the

five other key graphic languages, namely Opposed-position languages (e.g., bar chart),

Connection languages (e.g., network), Map languages (e.g., topographic map), Retinal-list

languages (e.g., graphics featuring colour, shape, size, saturation, texture, orientation), and

Miscellaneous languages in which information is encoded with a variety of additional

graphical techniques (Mackinlay, 1999; see also Lowrie & Diezmann, 2005).

Number lines have three potential cognitive advantages for users. Firstly, they

accommodate mathematical variability of concepts. Dienes (1964) argued that many

mathematical concepts are essentially multi-dimensional and particular representations

illustrate specific aspects of a concept. For example, a number line is useful in showing the

continuity aspect of rational numbers. Secondly, number lines are part of a suite of visual

representations that contribute to the perceptual variability of a concept. According to

Dienes (1964) it is advantageous to have different representations of the same concept. For

example, fractions can be represented by a number line and a pie diagram. Thirdly, number

lines are a tool for representational transfer. Representational transfer occurs when tasks

make use of a common representation, and the solution procedure is derived from the

representation (Novick, 1990). Thus, in representational transfer “the primary goal is

transfer of a representation in the absence of a common solution procedure” (Novick, 1990,
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p. 130). For example, by considering how to use a number line to find a missing number in

a set of whole numbers, a number line might cue a student about how to find a missing

number in a decimal sequence.

Number lines with marked line segments are referred to as structured number lines.

Advocates of these number lines argue for their value in number sequencing activities (e.g.,

Wiegel, 1998). However, number sequencing on a number line goes beyond knowing the

order of number names. Because the number line is a measurement model, rather than a

counting model, numbers on the number line are representations of lengths rather than

simply the points they label (Fuson, 1984). Thus, in determining an unknown marked

position on a number line, the proximity of the unknown from the known numbers is

important. For example, on a number line that commences with 0 and concludes with 10,

the number corresponding to a marked position between these numbers depends on its

proximity to each of the numbers. Additionally, number lines reportedly have the capacity

to concretise mathematical operations. For example, Davis and Simmt (2003) reported that

one student interpreted 3 x -4 as “three hops of length four” along a number line and

concluded that this student’s “concept of multiplication as repeated addition was blended

with the concept of multiplication as movement along a number line (p. 158). However, the

efficacy of the structured number line cannot be assumed because contrary results have also

been reported. For example, Fuson, Smith, and Cicero (1997) conducted a year-long

teaching experiment with a class of first graders in which they trialled various conceptual

supports for learning single digit addition and subtraction. They concluded that the number

line was neither “particularly powerful nor interesting to the children (p. 748).” Thus, there

is a need to better understand the conditions under which a structured number line is

effective.

Structured number lines often feature on numeracy tests however their utility as a

measure of rational number knowledge needs to be thoughtfully considered. Ni (2000)

questioned the validity of number lines as a measure of rational number knowledge on the

basis of her study with 413 fifth and sixth graders in which she found that number line test

items were poor indicators of children’s understanding of fractions. She argued that we

should not automatically attribute students’ poor performance to a lack of knowledge of

what is being measured and proposed that an alternative plausible solution for poor

performance could be that the measurement process does not tap students’ knowledge of

what is to be measured. Ni proposed that the utility of an item in tapping particular

knowledge provides an explanation for the apparent discrepancy between children’s

knowledge of basic properties of rational number as reported in developmental studies

compared to educational assessments. Thus, the use of a number line in assessment as an

effective measure of mathematical competence on a particular topic warrants further

exploration.

There are also empty number lines (Gravemeijer 1994). An empty number line is a

relatively new didactic model, which is reportedly “a very powerful model for the learning

of addition and subtraction up to 100” (Klein, Beishuizen, & Treffers, 1998, p. 443). The

success of the empty number line is due to its modelling function and the interactivity

generated from student-constructed number lines (Klein et al., 1998). Its failures as a model

has been attributed to students’ lack of flexibility with the model and its association with

measurement (Gravemeijer, 1994). Thus, the lack of foundation in measurement and the

lack of convention make the empty number line a fundamentally different model from the
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structured number line, which is the focus of this study.

Design and Methods

This investigation is part of a 4-year longitudinal study in which we are monitoring the

development of primary students’ ability to decode the six types of graphical languages

including Axis languages (e.g., the number line). Elsewhere, we have documented primary

students’ knowledge of particular graphical languages and their relative difficulty (Lowrie &

Diezmann, 2005). The aims of this study were:

1. To ascertain the proportion of students who were successful on two structured

number line tasks;

2. To identify the knowledge that led to successful use of the number line; and

3. To document the errors that led to unsuccessful use of the number line.

The Participants

The participants were 67 Grade 5 students (aged 10-11 years) from class groups at

Overton (n = 24) and Stanley (n = 43), which are two primary schools in a moderate socio-

economic area of a capital city. Overton is a public school (N = 393), and Stanley is a

parochial school (N = 685).

The Interview

The interview tasks were the easiest pair of Axis language items (See Figure 1) drawn

from the 36-item Graphical Languages in Mathematics [GLIM] test (Lowrie & Diezmann,

2005), which comprises six sets of graphic items for each of six graphic languages. The two

selected Axis items are similar in that they focussed on the identification of unnumbered

positions on a number line and dissimilar in that Item 1 and 2 focussed on whole numbers

and decimals respectively. The students completed these two items during an individual

interview and then explained their thinking.

1. Estimate where you think 17 should go on this number line.

(QSCC, 2000a, p. 11)

2. Colour a bubble to estimate where you think 1.3 should go on this number line.

(QSCC, 2000b, p. 8)

Figure 1. Axis items.
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Data Collection and Analysis

The interview data compromised students’ multiple choice selections and the reasons

students gave for their answers. The interviews were video- and audio-taped to facilitate

analysis. Aim 1 will be achieved by analysing the frequency of students’ performance at

each school on each task. Aims 2 and 3 will be addressed by analysing the reasons for

successful and unsuccessful responses respectively and their relative frequencies.

Results and Discussion

The first aim of the investigation was to determine the proportion of students who were

successful on each item. The results show that on average between 80% and 91% of

students were successful across tasks and schools with means higher for Item 1 than Item

2. The former focuses on whole number and the latter on decimals. There were two points

of interest. Firstly, the extent of the gender difference was unexpected. With the exception

of Item 2 for Overton, there was between 9% and 13% performance difference in favour of

males (See Table 1). This result is consistent with the results of another cohort (N = 217)

from the larger study across the six Axis items including the two items discussed here

(Lowrie & Diezmann, 2005). In that analysis, the Axis items were the only set of graphical

languages that revealed a statistically significant difference between the mean scores of male

and female students across the total set of any of the graphic languages [Axis (t = 12.2, p �

.001)]. Secondly, there was a substantial performance difference across schools with

Stanley (n = 43) outperforming Overton (n = 24) on both items. A plausible explanation

for the higher performance of one school over another is the perceptual variability of the

curriculum (e.g., Moss & Case, 1999).

Table 1.

Overview of Successful Student Performance on Axis Items

Item 1 Item 2

Male Female Total Male Female Total

Overton 90% 78.6% 83.3% 80% 78.6% 79.2%

Stanley 95.2% 86.3% 90.6% 95.2% 81.8% 88.3%

The second aim of the investigation was to identify the knowledge that led to successful

use of the number line. Successful students gave seven reasons for their selection of

responses for either Item 1 or 2 (See Table 2). These reasons can be grouped into two

categories. The Measurement category consists of those reasons that indicate an

understanding of the number line as a measurement model through explanations that refer to

distance, proximity or reference points (i.e., CI, EP, LR, RS, RP). The Inappropriate

category comprises explanations that focus solely on counting (CO) or guessing (GU). On

Item 1 (whole numbers), all successful students from Overton and Stanley gave reasons

from the Measurement category. However, on Item 2, there were substantial differences

between Overton and Stanley. All successful students from Overton gave Measurement

reasons. However, at Stanley, some students gave Measurement reasons (81.5%) and

others gave Inappropriate reasons (18.5%). One interpretation of these results is that as

the difficulty of the number line item increases from whole numbers to decimals some

students were less able to provide an appropriate reason for their selection of response.
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Table 2

Frequency of Successful Performance on Items 1 and 2

Overton Stanley
Reason Example

Item 1

(n = 20)

Item 2

(n = 19)

Item 1

(n= 39)

Item 2

(n = 38)

MEASUREMENT

closest to an

item (e.g.,

number) [CI]

*I chose D because it’s

closest to 20 and C is too

far away.

75.0% 47.4% 66.7% 28.9%

estimating

position [EP]

*I chose D because B is

right, a bit far away from

20 and C is in the middle

and I thought that would be

about 10 and A would be

too close to the 0 to be 17.

15.0% 10.6% 10.3% 21.1%

using a letter

or number as

a reference

point [LR]

*I think it would be D

because if half of that

number line is number C

and you would imagine the

number line in the middle

and then you can just look

further up to 20 …

5.0% 21.1% 10.3% 21.1%

relative

amount of

space [RS]

*Because of the amount of

space between each letter

and the amount of space

between D and 20.

5.0% 5.3% 2.6% 00.0%

to right or

past or after

1 [RP]

* I chose C which is a bit

to the right of the 1 and I

thought it would be there

‘cause it’s closer to 1 than

D is cause I think D would

be 1.5.

0% 15.8% 0% 10.6%

INAPPROPRIATE

counting on

or back [CO]

*I think it should go there

(D) because it’s next to 20

and it goes 19, 18 then 17.

00.0% 00.0% 10.3% 10.6%

Guessing

[GU]

#Well, it was a toss up

between C & D and I chose

C.

0% 0% 0% 7.9%

Key: *= Item 1 reason; # = Item 2 reason
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Table 3

Frequency of Unsuccessful Performance on Items 1 and 2

Overton Stanley
Error Example

Item 1

(n = 4)

Item 2

(n = 5)

Item 1

(n = 4)

Item 2

(n = 5)

SOLUTION

focusing on

distance (between,

too far, too close)

[FD]

*I chose C because that

would be too close.

0% 0% 25% 0%

inappropriate

counting back with

each letter as a

number [IC]

*I think it should be C

because I reckon 19

would be about there.

That would be 18 on D.

100% 0% 50% 20%

inaccurate position

[IP]

#I did D because it’s sort

of closer to 1 than 2 and

it’s sort of in the middle

as well to put 1.3.

0% 60.0% 0% 0%

misreading the

diagram [MD]

#I said A because it’s

kind of half way in

between the zero and the

1 and the B is a bit more

like 4 so I just said A

cause it’s about half way.

0% 40.0% 0% 40%

EXPLANATION

guessing [GU] *I just guessed because I

didn’t really get it.

0% 0% 25.0% 0%

vague answer [VA] #…because that would be

one less and I thought

that would be that too so

I thought that would be

good.

0% 0% 0% 40%

Key: *= Item 1 reason; # = Item 2 reason

The third aim of the investigation was to establish the errors that unsuccessful students

made in their use of the number line because knowledge of errors is an important facet of

pedagogical content knowledge (Carpenter, Fennema, & Franke, 1996). The range of errors

identified is shown on Table 3 in two categories. Solution errors comprised difficulties with

distance (FD), position (IP), counting (IC) or misreading the diagram (MD). The

predominant Solution error across items and schools was inappropriate counting (IC). This

error supports Fuson’s (1984) concern that measurement foundation of the number line is

overlooked by students and teachers. Explanation errors consist of guessing (GU) and

vague answers (VA). Explanation is a fundamental mathematical practice and students need
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to become adept at explaining their solutions (e.g., Diezmann, 2004). Hence, to guess or

give a vague answer is a general error because it indicates a lack of understanding of

acceptable mathematical practice. Students need to be encouraged to provide adequate

explanations because the communication of an explanation provides them with an

opportunity to review and, if necessary, refine their mathematical thinking. For example,

Shaun (Stanley) realised his error on Item 2 during his explanation for selecting D: “Because

it’s the closest to number one and D might be 5 [meaning 1.5]. Oh because um the one is

there and I accidentally put it down near this area and it should be one point three [1.3]”

(emphasis added).

Conclusion and Implications

Visual representations are an important tool for thinking and communicating

mathematically (e.g., Goldin, 1998) and essential for the Information Age (Cazden et al.,

1996). Hence, students need to become proficient with a broad repertoire of visual

representations in one, two and three dimensions. The investigation of students’

proficiency with the number line, a one-dimensional representation, provided an

opportunity to determine the evidence to support intuitive use of the number line in

instruction and to validate its role in assessment.

This study informs instruction in three ways. Firstly, it is fallacious to assume that

students are proficient users of number lines even for the seemingly simple task of

identifying unnumbered marks. At least 10% of students were unsuccessful on each of the

number line items. Thus, students need explicit teaching about the number line. Secondly,

the successful and unsuccessful students’ responses indicate the importance of students’

appreciation that the number line is a measurement rather than a counting model. Thus,

instruction needs to emphasise the linearity rather than cardinality of the model. Thirdly,

the role of explanation as a metacognitive process needs to be highlighted.

The study prompts us to provide a note of caution in relation to the interpretation of

performance on number line items on state, national or international numeracy tests. This

study and others (e.g., Ni, 2000) have identified that success on number line items involves

both mathematical content knowledge and representational knowledge of the structured

number line. Hence, to make claims about students’ knowledge of a particular concept (e.g.,

decimals); there is a need to assess the concept using various representations (i.e.,

perceptual variability). Similarly, to make claims about students’ knowledge of the number

line, there is a need to assess the representation using various concepts (i.e., mathematical

variability). Thus, the purposes of number line items on a test need to be clear.

Three avenues for further investigation have emerged from the study. Firstly,

performance differences between groups warrant investigation. Reasons for the gender

difference in favour of males and the school difference in favour of Stanley need to be

understood. Secondly, the role of the structured number line for purposes apart from the

identification of unnumbered marks needs to be explored. For example, number lines are

used in operations and problem solving. Thirdly, the relationship between knowledge of

the structured and empty number lines needs to be examined. The structured number line is

widely used and the empty number line purportedly offers much promise. However, they

appear to be fundamentally different models. Hence, the compatibility of these two models

of representation needs to be established.
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